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Abstract

Probability of close approach is the probability that two satellites will
be within some specified distance threshold of each other at a random time
within a specified time interval. In this paper, methods were developed to
calculate probability of close approach between two satellites. To simplify
the analysis, the investigation was restricted to satellite orbits and time
intervals where the mean anomaly of both satellites can be treated as
independent, uniformly distributed random variables. In addition, all orbital
parameters, except for mean anomaly, were assumed to be constant over
time. This means that all the methods developed in this paper to calculate
the probability of close approach will only be valid over very long time
intervals where the ratio of the orbital periods of the two satellites can be
approximated as an irrational number. Likewise, there can be no
perturbations in the orbital parameters of both satellites.

The first nicthod developed was a general method for calculating the
probability of close approach between two satellites in elliptical orbits. The
method requires numerical integration and direct solution of the roots of a
4th order polynomial during each numerical integration step.

Another method was developed for calculating the probability of close
approach between two satellites in ciccular orbits. This method still requires
numerical integration to obtain a solution, but in this case a direct solution
was found for the limits of integration. Futhermore. the -calculations
required during each numerical integration step are much simpler than those

required to calculate the probability of close approach with elliptical orbits.

vii



Finally, a direct solution for approximate probability of close approach
between two satellites in circular orbits was developed for the case where the
angle between the orbital planes of both satellites is not small and the
probability of ciose approach is smaii.

Both the elliptical orbit and the circular orbit methods of computing
probability of close approach yielded results that compare favorably with

estimates of probability of close approach derived from statistical simulations.
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I. Introduction
There are a variety of problems where the close approach of two
satellites is of interest. Here, close approach of two satellites is defined as
ocurring whenever the distance between two satellites is less than or equal to

some distance threshold d,;,. When the position and velocity of both

satellites are well known the actual time and duration of each close approach
can be predicted. However, if the time of interest cannot be predicted, then
a deterministic approach to the close approach of two satellites can no longer
be used.

The purpose of this paper is to develop methods to calculate the
probability of close approach between two satellites at a uniformly
distributed random time within a specified time interval. To simplify the
analysis, the investigation is restricted to satellite orbits and time intervals
where the mean anomaly of both satellites can be treated as independent,
uniformly distributed random variables. In addition, all other orbital
parameters are assumed to be constant over time. Because of these
restrictions, the methods developed to calculate probability of clc-e approach
are only valid over very long time intervals with some restrictions to the
ratio of the orbital periods of the two saiellites (see the Theory section of
chapter I1I).

In general, the goal is to come up with a way to calculate the
probability of cluse approach between two satellites in elliptical orbits. This
general method can alse be used to calculate the probability of close

spproach between two satellites in circular orbits, but it is computationally
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cheaper to use a method designed specifically to calculate th: probability of

close approach between two satellites in circular orbits. Similarly, there are

some special cases where an approximate method for calculating the

o ¥

probability of close approach gives adequate accuracy at much less

computational expense. For these reasons, three different methods will be

developed to calculate probability of close approach. The first mathod is a

=y

general method for calculating the probability of close approach between two

satellites in elliptical orbits (see chapter IlII). The second method is for

calculating the probability of close approach between two satellites in circular
orbits (see chapter IV). The last method is for calculating the approximate
probability of close :pproach between two satellites in circular orbits where

the probability of close approach is small and the angle between the orbital

;s T2 RIS

planes of the two satellites is not small (see chapter IV).

Finally, to verify that the three methods are correct, the probability of

»';.f

close approach will be computed (using the three methods, where applicable)
g for a variety of orbital test cases, and the results will be compared to values

derived from statistica! simulations.

(1]
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II. Background

Mu:h work has been done in investigating the probability of collision
between orbiting bodies (3, 6, and 8). Probability of collision is typically
defined as the probability that one orbiting body/satellite will come within
some distance threshold of another satellite one or more times within a
specified time interval. When dealing with probability of satellite collision,
the distance threshold used is typically very small, since it is directly related
to the physical size of the satellites involved.

More recently, work has been done in investigating the probability of
satellite intercept between satellites in circular orbits (9). Here, a satellite
intercept is defined as occurring when two satellites are within some distance
threshold of each other for at least some specified length of time.
Probability of satellite intercept is the probability that one or more satellite
intercepts will occur within some specified time interval that begins at some
uniformly distributed random time within another much larger time interval.

Probability of collision and probability of intercept are two examples of
probabilistic measures dealing with satellite proximity. This paper introduces
a new probabilistic measure of satellite proximity, called probability of close
approach.  Probability of close approach is the expected fraction of a
specified time interval over which the distance between the iwo satellites is
less than or equal to some distance threshold. For very long time intervals,
the probability of close approach equals the sum of the durations of all the
close approaches that occur within the specified time interval divided by the

length of the specified time interval.

Probability of close approach is verv different from probability of
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collision. When the probability of one or more collisions between two
satellites within a very long time interval approaches 1.0, the <cmputed
probability of close approach can approach zero. The reason for this is that,
regardless of the number of collisions, the actual time that two satellites
spend within the collision distance threshold can be a very small fraction of
the length of the time interval of interest.

Probability of close approach is closer in concept to probability of
intercept, but there are still major differences. Probability of close approach
places no requirement on the duration of the close approach, and close
approaches that occur after the uniformly distributed random time are of no
interest. Despite these differences, probability of intercept and probability of
close approach share three major assumptions. First, the time of interest is
assumed to be a uniformally distributed random time within some very long
time interval. Second, the mean anomalies of both satellites are assumed to
be independent, uniformly distributed random variables (probability of
intercept was derived only for circular orbits, where mean anomaly always
equals true anomaly). Finally, all other orbital parameters are assumed to
be constant over time.

Probability of close approach is different from probability of intercept,
just &s their purposes are different. When it is important that one or more
intercepts occur between two satellites, all within a specified time interval
starting at some random time, a high probability of intercept is desirable.
When it is important that one satellite spend as much of its orbital lifetime
as possible within some arbitrary distance threshold of another satellite, then

a high probability of close approach is desirable.




III. Probability of Close Approach Between
Satellites in Elliptical Orbits

The purpose of this chapter is to develop a method for calculating the

probability of close approach between two satellites in elliptical orbits.

Theory

i
§
i
i

The derivation of probability of close approach can be broken up into

three major parts. This section identifies these major parts and describes

5
-

-
-

how they can be put together to calculate probability of close approach.

o=
.

The next three sections of chapter III then completes the solution for each

-

of the three parts.

—l k. A

By definition, probability of close approach is the probability that the

distance between two satellites will be less than some distance threshold at a

-

uniformly distributed random time within a specified time interval. To

-

simplify the analysis, two basic assumptions were made. First, all orbital
elements, except for mean anomaly, are assumed to be constant over time.
Second, the mean anomalies of both satellites are assumed to be independent

random variables that are uniformly distributed between 0 and 2m. The

=2 B

first assumption is valid when there are no perturbations to the orbital

et |

elements of the two satellites. When is the second assumption valid? At a
uniformly distributed time within a specified time interval, the mean anomaly

of both satellites can be represented by (1:33, 1895)

M' = | P L,I‘l + M“ ) MOD 2= (1)
g M, =(2n t/P, + M,o ) MOD 2n (2)
s;:
R
5
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l where

t = time from start of time interval of interest.

M, = mean anomaly of satellite 1.
M,, = mean anomaly of satellite 1 at t = 0.
I M, = mean anomaly of satellite 2.
o M,, = mean anomaly of satellite 2 at t = 0.
P, = orbital period of satellite 1.
P, = orbital period of satellite 2.

and the general function X MOD Y represents the remainder of X divided

by Y. For purposes of this analysis, t is a random variable uniformly

distributed between 0 and the duration of the time interval of interest.

=

Since mean anomaly is a linear function of t (see Eqs (1) and (2)), M, and
M, are also uniformly distributed random variables when the duration of the

time interval is less than the orbital period of both satellites, or when the

duration of the time interval is equal to some integer multiple of the period

of both satellites. Furthermore, over very long time intervals (over 100

orbital periods) M, and M, approximate (within 1%) random variables that

are uniformly distributed between 0 and 2n. Therefore, over long time

s ) |

intervals the mean anomalies of both satellites can be treated as uniformly

4 distributed random variables (not necessarily independent).

- When can M, and M, be considered independent? Let t, be some

arbitrary time within the time interval of interest, and let n be some

nonnegative integer. Using Eqs (1) and (2), at t = t + nP, the mean

anomalies of both satellites can be represented by the following:

R
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M, (3)

M, =
M, = [ 2m (P,/P)n + M, ] MOD 2 (4)

where

-

M,, = the mean anomaly of satellite 1 at t = ¢t

M,, = the mean anomaly of satellite 2 at t = ¢ .

m

Similarly, at t = t, + nP, the mean anomalies of both satellites can be

-
B

represented by

wlma?

[ 2m (P,/P)n + M,, ] MOD 2m ()

M =
M, = M,, (6)

b=

M, and M, can be considered independent so long as the results of Eqs (4)

and (5) are uniformly distributed between 0 and 2m. Once again, let n be
some nonnegative integer. Also let nmax be the maximum number of orbital

periods within the time interval of interest. There are two cases in which

M, and M, can be considered independent. The first case is where P,/P,

oG R R

and P,/P‘ are irrational, and for n between 0 and nmax, the distances from

sl

(P‘/P,)n and (P,/Pl)n to the nearest integer are not less than one divided

.-3 by nmax. For practical purposes, the ratios P,/P, and I"’,/Pl can be
o considered irrational when (P,/P,)n and (P,/P))n do not equal integers for n

between 0 and nmax. The second case is where (P,/P,)n and (P P,)n
q

r
_r
E
p
|
|
|
I
]
i
' ] equal integers for some value of n less than nmax, where n is large (1000+).
|

kmmwww.g~s‘u¢qu~m;ﬂLmA . vl A s e s A eea Sl e eeEm muME . e s mEm L el L o . m o am a aa e o



E

}A ks 4 s bTa o0 Bte 3

e
> 7o

[~ B - ]
-

>

=]

»
»

and either nmax MOD n is large (1000+), or the distance from nmax
divided by n to the nearest integer is small. For members of the second
case where nmax MOD n is large, the orbital ratios must also meet the
criteria of the first case for n between 0 and nmax MOD n.

Generally speaking, if P,/P, and P,/P, a.e irrational, and the time
interval of interest is very long (1000+ orbital periods), then the mean
anomalies of both satellites can be considered independent, uniformly
distributed random variables.

As discussed above, the mean anomalies of both satellites are assumed
to be independent random variables that are uniformly distributed between
of 0 to 2rn. This means that the probability density functions of the mean

anomalies of the two satellites can be represented by (5:72-73)

M) = 2}? for 0 S M, < 2n (7
M) = 2;_ for 0 S M, < 2n (8)

where

M, = the mean anomaly of satellite 1.

M, = the mean anomaly of satellite 2.

Likewise. the joint probability density function of the mean anomalies of

both satellites can be represented by (5:135, 139-140)

M) = Ly for 08 M, < 27 (9

4

o
=4

05 M, <
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The probability of close approach (P;) can be computed by
integrating the joint denmsity function over the region of M, and M, where

the distance between the satellites (d) is less than or equal to some distance

threshold d.;. Eq (10) is the formula for probability of close approach

between the two satellites:

P,, = f Sk (10)
R, R,
where R, is the region of M, over which a close approach occurs, given M,
and R, is the region of M, over which some close approach with satellite 2
is possible.
To simplify analysis, four functions will be defined. At this point,

these functions are strictly symbolic, and no solution for these functions

exist. The four functions are M (v,), M,(v,), d(M,M,), and AM,(M)).

M,(v,) is the mean anomaly of satellite 1 as a function of the true anomaly

of satellite 1. Similarly, M,(v,) is the mean anomaly of satellite 2 as a

function of the true anomaly of satellite 2.  The function d(M,M,)

represents the distance between the two satellites as a function of their mean

=)

anomalies. The last function is AM,(M,), which is defined as

>

AM,(M,) = J dM, (11)
R,

SRS

LR S

R
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Substituting Eq (11) into Eq (10) results in

P,, = f amy M) M (12)
4r?

1

Given M,, the distance between the two satellites is purely a function of M,

(all other orbital elements are assumed constant). Each M, solution to the
equation d(MM,) = d., will be referred to as a mean anomaly close

approach boundary. The reason for this is that they delimit the mean

anomaly regions of close approach between both satellites. For each two M,
solutions to d(M;M,) = dg, , there is a mean anomaly close approach

region such that

dM,M,) S dyy  for M, SM,s M

I 313

My, 3 M,

where M . is used to represent the beginning of the ith close approach

1m
region, and M,m is used to represent the end of the ith close approach
region. If there is more than one close approach region, then the regions are
numbered so that the mean anomaly of the beginning of the i+1 close
approach region is greater than or equal to the mean anomaly of the end of

the ith close approach region. The possible range of each mean anomaly

10
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close approach boundary is from 0 to 2m. The exception to this is when a
close approach region crosses 2m. In this case, Ms/u (the beginning of the
first close approach region) can range from -2m to O so that the close
approach region that crosses 2m does not have to be broken into two parts.
Given all this, when there are n close approach regions and n is greater

than zero, the general solution for AM,(M,) is

AM,(M,) = g.j‘ ( My — My ) (12)
where
-2n S Mz/u s 2n
OSM"“SZﬂ’ for i >1
0s M:m S 2m

dM;M,) S dgyy  for M, S M, s M,
dM, .\ ,) = dyy
d(Ma’M:m) = dypy
My S M,

M

M,, for n>1 and j > i

2 < M:m

For example, when there are four M, solutions to d(M,M,) = d, , the

solution to AM,(M|) can be represented by (also see Figure 1)

AMM) = M., - M. + M,,, - M (13)

3y N 312 m

1t




where

-
- Fria - =

-2 s M,,, s 2n 05 M,,,s2n
0sM,, s2n 03 M,, s2n
I d(M,,M,,,) = dgy d(M,M,,;,) = dpy
d(M,M,,,) = dgy d(M,M,,,,) = dpy
M,,, 2 M, M, & My,
My 2 M,
dM,M,) 3 dgy for M"" sMs th

dM,M,) S dpy  for M,, SM,SM,,

When there are no M, solutions to d(M;M,) = dg , AM,(M,) can possess
one of two possible values. If d(M,M,) > d,, for 03 M, S 2r , then
AM,(M)) must equal sero. If d(M M,) S dpy for 0 S M, S 21, then

AM,(M,) must equal 2n. However, even when there are no M, solutions to

‘- -
B R e B SR B

d(M,M,) = dg, , Eq (12) can still be used to calculate AM,(M,) through

the following procedure:

B S

If d(M,M,) > dgy, for 0 S M, S 2r (14)

n=1

i

[ =4
- <

1
=3
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If dM,M,) S dy, for 0 S M, S 2x (15)
n =1
M,,,, =0
My = 27

Distance Between

vk IR BN B 9 2S5 EE =R ER

Satellites
'Y
Mllll M’Iﬂ Mtlll M!I”
s !
g
v ™
l —2n 0 2

Mean Anomaly of Satellite 2

& 5

Figure 1. Description of Close Approach Boundaries

"
-vw

With non-circular orbits, true anomaly is much easier to work with

o)

than mean anomaly. With this in mind, let d now be represented as a

function of true anomaly instead of mean anomaly. In other words, d(v,v,)

L

¢

- WS T TR
-
.

w5 mex

now represents the distance between the two satellites as a function of the

true anomalies of both satellites (v, and v,). Given the true anomaly of

13
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satellite 1 (v,), the distance between the two satellites is purely a function
of the true anomaly of satellite 2 (v,). Each v, solution to the equation
d(v,v,) = dgy will be referred to as true anomaly close approach boundary.
For each two v, solutions to d(v,v,) = dqy , there is a true anomaly close

approach region such that

d(v,v,) = dyy, for v,,, S v, s Ve

3/

SV

Vam i

where v, . is used to represent the true anomaly of the beginning of the ith

3
close approach region, and Vap Tepresents the true anomaly of the end of

the ith close approach region. Mean anomaly close approach boundaries and

true anomaly close approach boundaries are related in the following way:

M, = My(v,p,) (16)

M,m = M,(v 17)

ans)

where M,(v,) is the mean anomaly of satellite 2 as a function of irue

anomaly.

Given v,, AM, can now be expressed as & function of the true anomaly

of satellite 1. When there are n close approach regions and n is greater

than zero, the general solution for AM,(v,) is (also see Eq (12))
AM(v,) = 3 [ My(vyp) — My, ) (18)

14
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where

-2r S v S 2r

211

0sv,,, S2n for i>1

3

Osv,, S 2nr

I

d(v,v,) S dgy for Ve Sy, S Vs

d(v,v,,,) = dey

-
H

d("v"m:) = dgy

Voo S V

im 3

u,mSv,m for n>1 and j > 1

When there are no v, solutions to d(v,v,) = dgy , Eq (18) can still be

used to compute AM,(v,) through the following procedure (also see Eqs (14)

and (15)):
I dv,v,) >dgy for0av, S2n (19)
n=1
Voy = 0
§ Vapg = 0
:‘S I d.ry) s dyy for 0 s v, S 2n (20)
.i. n = |
B
i 15




Vo = 2

By changing the integration variable in Eq (12) from mean anomaly of
satellite 1 to true anomaly of satellite 1, the equation for probability of close

approach becomes (4:212)

P, = f AM(v,) (E%f_:_’ﬂ) =, (21)

T

where T, is the region of v, over which a close approach is possible.
Using Eq (21) to compute P,, requires integration over the region of

v, where some close approach with satellite 2 is possible. Since AM,(v,) can

be discontinuous for some v,, this requires that the limits of integration be
found over which tﬁe function AM,(v,) is continuous before Eq (21) can be

integrated analytically.  Unfortunately, there is normally no closed form

solution for the limits of integration. Therefore, to calculate probability of

close approach, Eq (21) must be numerically integrated over the complete 2m

range of v,

XA

The final equation for probability of close approach between two

satellites in elliptical orbits is

s

L

n
P, = f AM,(v) (—“LMJQ-/J2

. dv'
ﬁ = 4

) l dv ()

ryan
‘”. ]
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where for each numerical integration step, AM,(v,) is computed using Egs
(18) — (20).
Three more things are needed to complete the solution for probability

of close approach:

1. An equation for M,(v,) (see Eq (18))
2. Aa equation for dM,(v,)/dv, (see Eq (22))

3. Given v, and d,y, a method to determine the close approach
boundaries (Vz/u and u,m) (see Eq (18) — (20))

The solutions to these problems are the subject of the next three sections of

chapter IIl.

Mean Anomaly as a Function of True Anomaly

The purpose of this section is to derive an equation for mean anomaly
as a function of true anomaly.
Eqs (23) and (24) are the well known equations relating true anomaly

to eccentric anomaly (2:62), and mean anomaly to eccentric anomaly (1:85):

tan(v/2) = [(1+e)/(1—e)]'/? tan(E/2) (23)
M = E - esinE (24)
where
vV - true anomaly
e — eccentricity
E - eccentric anomaly
17
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Substituting

B = [(1-e)/(1+e)/? (25)

S R e

into Eq (23), and then rewriting it as an equation for eccentric anomaly as

- -
v -
(g

a function of true anomaly, results in

E = 2 tan™'[f tan(v/2)) (26)

k= eex

Substituting Eq (26) into Eq (24), yields an equation for mean anomaly as a

B function of true anomaly:
E. M = 2 tan-'[3 tan(v/2)] — e sin{2 tan~'(8 tan(v/2)]} 27)
ﬁ Substituting

Eg ¥ = B tan(v/2) (28)

into Eq (27), results in an equation for mean anomaly as a function of ¥:

M = 2 tan~'y — e sin[2 tan~'Y) (29)

By applying the trigonometric relationship (7:190) sin20 = 2 sin@ cos6 |,

=

where 6 = tan~'y , Eq (29) becomes

e

M = 2 tan~'y - e [2 sin(tan~'y) cos(tan~'y)) (30)

-
0S4

Substituting (7:193)

e

sin(tan~'y) = ¥/(1+9*)" (31)

18
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cos(tan~'9) = 1/(1493)V? (32)
into Eq (30), results in

M = 2 tan~'y — 2e [¢/(1+¢7)VA1L/(1+9)"7]
M =2 [tan™'¥ — e ¥/(1+¥7)] (33)

Substituting Eq (28) back into Eq (33), yields

M = 2 {tan~}[8 tan(v/2)] — e B tan(v/2)/[l + B* tan’(v/2)]} (34)

As a last step, multiply the right half of Eq (34) by cos*(v/2)/cos*(v/2) and

simplify:

M =2 [ tan~'[8 tan(v/2)] - [c:sfius;g)("fz’;f‘fh(“,’(/f}?)] ] (35)
Eq (35) is the equation for mean anomaly as a function of true anomaly,
which is one of the things needed to compute the probability of close
approach. However, when using Eq (35) to compute mean anomaly in a
computer program, the program should first check the value of v. If v
equals 7, then the program should directly set mean anomaly to 7 instead
of trying to calculate mean anomaly using Eq (35), because tan(m/2) is
infinite.  Likewise, if v equals —m, then the program should directly set
mean anomaly to —m. When v is not equal to +m, then Eq (35) can safely

be used to compute the mean anomaly.



Derivative of Mean Anomaly With Respect to True Anomaly

M(v) represents mean anomaly as a function of true anomaly (see Eq
(35)). The purpose of this section is to solve for the derivative of M(v)
with respect to true anomaly.

Differentiating Eq (33) yields

dM = 2 [ 1/(14+9%) - /(1+9%) - 2 ¥¥/(1+¥%)% dv¥ (38)

By using (1+%%)® as a common denominator in all three terms above, Eq

(36) can be simplified into

R R O SN O S B O3S EE

3 _ o[ 1t e 0+ ¥ - 29

% = s (1+97) ] o

i M = 2 l-e(j+$;)+;ehl/2 ] av @0
)
k .3
"
! ! Differentiating Eq (28), yields
3 3 dv = (B/2) sect(v/2) dv (38)
>

Substituting Eqs (28), and (38) into Eq (37), results in

3
§ at
1 ::' - 1 3
E [ E e o i a o0
Py
;B
E:‘ " Substituting
! g

. (1+e)8? = 1-e
: 3
; <
g 20
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into Eq (39), results in

- —_ H 2 ]
M = 2| ISR | B/ sectwr2) av

e

- £ 2 ]
=2 “[1 ei( é, 'u;‘;?v%]%” (8/2) sec’(v/2) dv (40)

Using the trigonometric relationship

B2 =X 8

1+tan?(v/2) = sec’(v/2)

ped

Eq (40) can be simplified to

E A

dM/dv = 2 [ i (jr“zlsi‘fn%"(ivz/)z)],] (B/2) sect(v/2)

_  (1—=e)f sec*(v/2)
dM/dv = e tan (v /2)T (1)

As a last step, multiply the right side of Eq (41) by cos*(v/2)/cos'(v/2) |,

and then simplify:

1 2 SER v

[
& = (1-e)B
el [cos*(v/2) + B? sin(v/2))? (42)
2 This removes any potential numerical problems at v = zm.
s

Eq (42) is the equation for the derivative of mean anomaly with
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respect to true anomaly, which is the second of three things needed to

compute the probability of close approach.

Finding Close Approach Boundaries Given
the True Anomaly of Satellite 1

Given v,, when there are 2n v, solutions to d(v,Vv,) = d;y; and n is

positive, there are n true anomaly close approach regions. The close

approach boundaries of the ith close approach region can be represented by

Vo and L where
-2m S Van S 2m
£ 0= Yam S orm for 1> 1
o]
- 02v,,=:2n
d(u;.vz) S dg, for Vo sy, s Vara

by
e d(v,vyp) = dpy
! AV Vyp,) = dpy
) Vo & Vo
?
by . .

Vo s Vs for n>1 and ) > i
,‘,

The close approach boundaries for each close approach region are required to

calculate AM,(v,) (see Eq (18)), and a method to determine the close
approach boundaries of each close approach region is the last thing required
to complete the solution for probability of close approach between two

satellites in elliptical orbits. The purpose of this section is to develop a

U P o W L IR N S S S NN S G G A A A A A T A LRl SR Lt S Rt et T T R VR Qg p Y
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method to calculate v,, and v,,, for each close approach region given the

M £74]

true anomaly of satellite 1.

When numerically integrating Eq (22), only v, and v, are known at

o

the beginning of each numerical integration step. To compute the distance
between satellite 1 and 2, the position vectors of both satellites must be
determined within a common cartesian coordinate frame. For convenience,
the perifocal frame of satellite 2 was selected.

The position vector of satellite 2 in the perifocal frame of satellite 2

can be represented by (1:72)

Ly = (X% ¥y 3, ) (43)
i where
}.3: x, = r, cos(v,) (44)
s .

y, = r, sin(v,) (45)
i 2, = 0 (46)
g r, = p, / [1+e,cos(v,)] (47)
§ and
e, = eccentricity of satellite 2

g p, = semi-latus rectum of satellite 2
‘ v, = true anomaly of satellite 2
5 r, = the magnitude of Ly

Likewise, the position vector of satellite 1 in the perifocal frame of satellite 1

g can be represented by (1:72)

F’""w‘ AR TR W W PR W I BN R vy - v s NS WS o o TN W
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uuce
-l

l L ={x ¥ 3} (48)

@ where

E x, = r, cos(v,) (49)
y, = r, sin(v)) (50)

@ 2, =0 (51)

E r, = p, / [l+ecos(v))] (52)

g and

| e, = eccentricity of satellite 1

E p, = semi-latus rectum of satellite 1

<
I

true anomaly of satellite 1
= the magnitude of Lyn

Transforming the coordinate frame of r, from the perifocal frame of satellite

s RS
—"'l
|

1 to the perifocal frame of satellite 2 can be performed in two steps. The

first step is to transform r, from the perifocal frame of satellite 1 to the

earth centered inertial reference frame. The last step is to transform r, from

the inertial frame to the perifocal frame to the perifocal frame of satellite 2.

s |

The transformation from the perifocal frame to the inertial frame can

g be done by multiplying the position vector in the perifocal frame by the
' following transformation matrix (1:82-83):
: R i

R,
R

11
RGw) = | R, R, (53)
1

PP
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. where
g R,, = cos Q cos @ - sin { sin @ cos i (54)
u R, = —cos () cos @ — sin () sin @ cos i (55)
R, = sin Q sin i (56)
B R,, = sin 2 cos @ + cos 1 sin w cos i (57)
g R,, = —sin (2 sin @ + cos ) cos w cos i (58)
ﬁ R,, = —cos (0 sin i (59)
R,, = sin @ sin i (60)
3
Vs R,, = cos w sin | (61)
i R,, = cos i (62)
$ and
i = orbital inclinition
w = argument of perigee
(0 = longitude of the ascending node

e

Regardless of the perifocal plane that the position vector of satellite 1 is

-~ transformed into, the position vector of satellite 1 in the inertial frame is
o
- unchanged. This means that
S
ot .

!”[ = B—(ll'w‘,()') [l,,, (63)
& ny = RG,0,0,) 1, (64)
(r,
ﬁ B(i,,m,,ﬂ.) ru’l = E(i,!u’tog) r"’, (65)

25
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where

1 inclination of satellite 1

inclination of satellite 2

argument of perigee of satellite 1
argument of perigee of satellite 2

1
@,
@,
(), = longitude of the ascending node of satellite 1
longitude of the ascending node of satellite 2

= the position vector of satellite 1 in the inertial frame

Q

Lin
= the position vecto: of satellite 1 in the perifocal plane of
satellite 1

-l-'lhl
Lyp = the position vector of satellite 1 in the perifocal plane of
satellite 2
- R(i,w,Q,) = the transformation matrix to transform from the perifocal
{
E
E
!
\
)
E

Ecd

=

I

frame of satellite 1 to the inertial frame

. R(i,,w,,0};) = the transformation matrix to transform from the perifocal
frame of satellite 2 to the inertial frame

Multiplying both sides of Eq (65) by R~'(i,w,(),) results in an equation for

the position vector of satellite 1 in the perifocal frame of satellite 2:

A Fyp = B7p0p0,) RG,0,0) 1y, (66)
The transformation matrix B is orthogonal (1:79-83), so

R™(i,,0,) = R™'(i,w,0,) (67)
Substituting Eq (67) into Eq (66), yields the final equation for Lyt

& fyp = R1050,0,) RGip0,0) 1, (68)

ey

-
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Eqs (43) through (62), and Eq (68) make it possible to compute the
position vectors of both satellites within the perifocal frame of satellite 2.

Given that

L= (X% ¥ 3} (69)

Ly = (% vy, 0} (70)

the distance between satellite 1 and satellite 2 can be represented by

B 5

d={(x, - x)+ (v, - y) + 2 (1)
Simplifying Eq (70) further, yields

d = ( x}=2x,+x} y}—2y|y,+y: + z: )
d = ( x3+yd+2} + x4y - 2xx, - 2yy, ) (72)
Substituting r} for x}+yl+2] and r} for x}+y;, Eq (72) becomes
d=(r+8-2x - 2yy, ) (13)

Substituting Eqs (44) - (47) into Eq (73) results in

d = + P: _ 2x,p,cos(v,) _ 2y,p,sin(v,) ? an
1 {1+e,cos( L':)} G 1+e,cos(v,) 1+e,cos(v,)

After squaring both sides, subtracting r} from both sides, and then

3
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multiplying both sides by [1+e,cos(v,)]?, Eq (74) becomes

(d*~r])[1+e,cos(v,))* = p} — 2xp,cos(v,)[1+¢,c0s(v,)]
— 2y,p,sin(v,)(1+e,cos(v,)] (75)

Simplifying Eq (75) further

(d2—r2)(142¢,cos(v,)+edcos*(v,)] — P} + 2x,p,cos(v,)(1+e,cos(v,)]
= -2y,p,sin(v,){1+e,cos(v,)]  (76)

Now Eq (76) can be expressed as a polynomial of cos(v,):

A cos'(v,) + B cos(v,) + C = —2y,p,sin(v,)(1+e,cos(v,)] (77
where
A = e(d*-r}) + 2x;p,) (78)
B = 2[e,(d'-r) + x,p) (79)
C = d'-rj-p} (80)

Squaring both sides again, Eq (77) becomes

Alcos'(v,) + 2ABcos’(v,) + (2AC+BY)cos’(v,) + 2BCcos(v,) + C?
= 4ylplkin(v,)[1+42¢,cos(v,)+ejcos’(v,)] (81)

Using the trigonometric relationship 1-cos’v, = sin®v, in Eq (70) yield:

Alcos'(v,) + 2ABcos’(v,) + (2AC+B?cos’(r,) + 2BCcos(v,) + C?

28
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= 4yipl[l-cos’(v,)](1+2e,cos(v,)+ejcos*(v,)]

Alcost(v,) + 2ABcos(v,) + (2AC+B?)cos’(v,) + 2BCcos(v,) + C?
= 4ylp3(1+2e,cos(v,)+(e}—1)cos*(v,)—2e,cos?(v,) —edcos(v,)] (82)

Now Eq (82) can be expressed as a single 4th order polynomial:
P,cos'(v,) + Pcosi(v,) + Pycos’(v,) + Pgcos(v,) + P,=0 (83)

where

>
I

1yip} (84)
2 P, = A? + Ke? (85)
i P, = 2AB + 2Ke, (86)
| P, = 2AC + B! + K(1-¢)) (87)
:3‘.; P, = 2CB - 2Ke, (88)
C* - K (89)

oLy Ol
Jo
I

The roots of a 4th order polynomial can be solved for directly

’.! (7:103-106). This means that, given v,, Eq (83) can be used to solve for
all possible values of cos(v,) where the distance between the two satellites is
i\ equal to d,

; A special case occurs when the absolute value of y, approaches zero.

When Y, equals zero, Eq (83) reduces to (see Eqs (77) to (80))

3
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A cos*(v,) + B cos(v,) + C =0 (90)
where
A = e(d-P) + 2xp, (o1)
. B = 2[e,(d*-r}) + x,p,] (92)
C = d*-r-p} (93)

This also means that, when y, equals zero, Eq (83) is equal to the square of

B 26 999

& 2nd order polynomial. Theoretically, when y, equals zero, the roots of the

square of Eq (90) are the same as two copies of the roots of Eq (90).

However, in practical applications, this is not the case. When using IEEF
double precision arithmetic, the direct solution of the 4th order roots of the
square of Eq (90) can result in a pair of :umplex conjugate roots for each
real root of Eq (90), where the real component of each pair of complex

! conjugate roots would equal one of the real roots of Eq (90), and the

imaginary component would be some small value on the order of 10-%.

R R R N . S .~
- o B
L xS

i The addition of any imaginary number to an otherwise valid solution

for cos(v,), makes that solution unusable.  Because of this, when the

L |

absolute value of y, is small, two copies of the roots of Eq (90) should be

-,
-

Ll e BE i
-
LA

used, instead of directly solving for the 4th ordzr roots of Eq (83).

-

Under some conditions, it is possible that both P, and P, in Eq (83)

>

-
’

) will equal zero. For example, when satellite 2 is in a circular orbit (e,

|t

equals zero), both P, and P, in Eq (83) are always equal to zero. This case

T W
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b

8""-4

can be handled by checking the values of P, and P,, before solving for the
4th order roots of Eq (83). If both P, and P, in Eq (83) are equal to zero,
then the desired solutions are the roots of the remaining 2nd order equation.
Another special case occurs when y, approaches zero and satellite 2 is in a

circular orbit. Ignoring the fact that satellite 2 is in a circular orbit, since

Yy, is approximately zero, the desired solutions should be same as two copies

of the roots of Eq (90). The difference is that the A coefficient of Eq (90)
is equal to zero because the eccentricity of satellite 2 is equal to zero. This

reduces Eq (90) to a 1st order polynomial (see Eq (94)) with one solution

(see Eq (95)):

B cos(v,) + C =0 (94)

cos(v,) = -C/B (95)

However, similar to above, this can be handled by checking the value of A
before solving for the roots of Eq (90). If A equals zero, then the desired
solutions are the same as two copies of the single root of Eq (94) (see Eq
(95)).

The procedures above yield two or four values of cos(v,) that are the
roots of Eq (83), or Eq (90) when the absolute value of y, is small (on the

order of 10~*km). After discarding solutions that are complex or have an
absolute value greater than 1, there will be zero, two, or four valid solutions
left.  Ultimately, when there are two valid solutions, the close approach

boundaries Vam and Vypy Must be found that meet the criteria described in

31
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Eq (18) for n equal to one. Simarily, when there are four valid solutions,

the close approach boundaries v must be found that

s Vapg Vapap 304 Vg

meet the criteria described in Eq (18) for n equal to two.

Two problems remain. The first problem is that both cos(v,) and
cos(2m—v,) are equal to cos(v,). Given that 6 = cos™![cos(v,)] , it is not

known whether v, = 0 or v, = 2n-6. Of course, v, can be found

through the following procedure:

if d(v,8) = dyy

v2=9

he else

i v, = 2m—0

h . . . .

: ;:; Unfortunately, this method requires a lot of CPU time to implement, so

kN

1 another way is needed. The second problem is that once the values of v,
are found where d(v,v,) = dg, , the solutions for Vanr Vaper Vagar and

Vajay 7€ still not known. For example, with two v, solutions, there is no

LB B
(3 =
|y s

way to tell which of the two solutions is v or without some

2/11 Vana

i

additional work. If there were some way to compute Ve Vape Vaga and
.
'.
Qt Vo directly from 6, then both problems would be solved.
;.; Let ¢, through ¢, equal the valid solutions for cos(v,), such that
4

Y

'é 1Si$n

N
T
32
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where

n = number of valid solutions for cos(v,)

Let 6 = cos”!(¢) where 1 Si<n and 0 =6 = m Note, because ¢,

=R P

g #
-

is sorted in descending order (greater i, smaller ¢), 6, will be sorted in

u
=g

ascending order (greater i, larger ©)). The goal is now is to find some way

a
¥

to relate 8, — 0,, to true anomaly of the close approach boundaries of each

C#S |

close approach region.

% This process is simplified considerably by redefining close approach so
::.; that a close approach occurs when sateliite 2 is within some distance
. threshold pd,,. of the projection of the position of satellite 1 onto the orbital
ﬁ plane of satellite 2. This new definition of close approach effectively makes
55 close approach a two dimensional problem, and the new definition of close
=

approach is completely equivalent to the old definition, so long as

pdpy = (diy — )" (96)

where

1 Y A

z, = the distance from satellite 1 to the orbital plane of satellite 2

(see Eq (69))

S

~ From Eq (69), the projection of the position vector of satellite 1 in the
N perifocal frame of satellite 2 on to the orbital plane of satellite 2 can be
Y

represented by

A

&

. Fype = 0% ¥, 0} (97)
:12
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Two final terms of interest are:

B, = {la,(1-¢))~x | +y}}'/? (98)

Bg = {[a3(1+e2)+x1]z+yz}ln (99)

HFl a2 R

where B, is the distance from r_ to satellite 2's perigee, and B, is the

Ip

bt srs

distance from r, to satellite 2's apogee.

Now all the tools are in place. Given the results of Eqs (96) — (99),

Vn

T

oL

there are three basic checks, that along with the number of valid solutions

to Eq (83), can be used to find a set of equations relating Vane Vapy Vapp

and v,,., to 8, These three checks are

2/22 I

i RS

. Isy, >0

2. Is pdyy > B,

"‘“- ;r ':

3. Is pdyy, > B,

=3

Since the results of each check is either true or false, there are 8 possible
combinations of results. Each one of these combinations represents a

different type of close approach which requires up to three different sets of

e ==

equations to represent possible cases with zero, two, and four valid solutions.

E} Table 1 lists the type of close approach that corresponds with each possible
o result of the three checks.

K

wy
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TABLE 1

Conditions Required for Each Type of Close Approach

=<3 I

e

i Close Approach

E Results of Close Approach Type Checks Type

:gg y, 20 pdy = B, pdyy = B, 1

‘ y, =0 pd;y S B, pdy, > B, 2

i

) y, =0 pdy, > B, pdy, < B, 3

>

@ y,$0 pdyy > B, pdyy > B, 4
o y, >0 pdyy = B, pdyy £ B, 5

y, >0 pdyy = B, pd,; > B, 6

e

' y, >0 pdy, > B, pdy, S B, 7

:* y -0 pdy, > B, pdyy > B, 8

Appendix A contains the actual equations for each type of close
approach. As a general convention within each type of close approach, when

are set to zero. When

(100)

- there are two valid solutions, both Vasay and Ve
§ = there are no valid solutions, then the following procedure is used (also see
b - _
[ = Eqs (19) and (20)):

" if pdy > B, and pdyy > B,
i L]

55 Vyp = 0 Vo = 0

]

. Vo = 27 Vopre = 0

!'.o

s
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if pdy; < B, and pdy < B, (101)
Vapy = 0 Yape = 0

b _ —
Vapy = 0 Vapg = 0

Projected Position
of Satellite 1

RN KBS A BESS
*

=3

Region of
Close Approach

A
<

)
Orbit of Satellite 2

Gl

Figure 2. Example of a Type 2 Close Approach

e |

The following example will demonstrate how to use the type of close

approach to calculate v and v from 6, through 6.

sy Vapr Vapap 2/32

Inspection of Figure 2 reveals that y, $ 0, pd,, < B,, and pd,, > B,

This means that Figure 2 is an example of a type 2 close approach. Since

s S am an g g o 4
: )
s

| ~~

the orbit of satellite 2 enters and exits the area of close approach once,

there are two valid solutions. Once again by inspection, 8, is about 160°,

&

L
o
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e

and 6, is about 170°. For two valid solutions, Table A—2 contains the

equations to calculate Vo and Vans from 8, and 0,

Vo = 0, (102)

Vo = 270 — 8, (103)

B3

Applying Eqs (102) and (103), Vot equals 170°, and Vo equals 200°. Since
there are only two valid solutions, Vo and Vajeg 2T€ by definition equal to

Zero.

Algorithm Summary

The probability of close approach between two elliptical orbits can be

found by numerically integrating the following equation (also see Eq (22)):

- T
| ~ M. (v)\ 1
& PCA = IﬂAM,(Ul) <_dLU_‘_L> 4—1?, dUl (104)

Where for each numerical integration step, dM,(v,)/dv, is computed using

“y
N

e

(also see Eqs (25) and (42))

=

B, = [(1-¢))/(1+e ' (105)

W (l-el)ﬁl
= : 106

.. dM(Ul)/dUl [Cosj(ul/2) + ﬁ: Slnﬁ(vl/z)]i ( )
s
> and AM,(v|) is computed using the following procedure:
)
:}‘
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1. Compute the positions of both satell.tes within the perifocal frame

E S R

of satellite 2 using Eqs (43) — (62), and (68).

2. If the absoiute value of y, is cmall (on the order of 10~* km) and

e, is non zero, then find the rocts of Eq (90) and use two copies of

7R KRx

those roots to obtain four solutions. If the absolute value of y, is

small and e, is zero, then find the root of Eq (94) and use two copies

feror~ R =~

of that root to obtain two solutions. If the absolute value of y, is

not small, find the roots of Eq (83).

=

e

3. Discard those roots that are complex, or those with absolute

values that exceed one. The roots that remain are valid solutions.

LA

E 4. Let @, through ¢, equal the valid solutions for cos(v,) such that
! 1Sisn
Iy ¢ = 9,
5
n where n is the number of valid solutions. Let 6, = cos~!(@,) where
' 1SisSn and 056 Sm
~

A
o 5. Using Eqs (98) and {(99), compute the two distance bounds, B,
N
, and B, Use Eq (96) to compute the close approach projected
™y

distance threshold, pd,,.

.-

& il
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6. Perform the close approach checks, and locate the appropriate
type.of close approach in Table 1. Look up the desired type of close
approach in Appendix A, then using the number of valid solutions,

select the proper equations relating v,,,,, Vy) Vypp and oy t0 8

Compute Vane Vapie Vaay and Vajar

s

7. Calculate AM,(v,) with the following equation:

AMz(vl) = Mz(uzm) - Mz(uun) + Mz(vzm) - Mz(uzm) (107)

B3 U5

where (also see Eqs (25) and (35))

‘v';t’é

B, = [(1-¢)/(1+e,))'/? (108)

e, B, sin(v,/2) cos(v,/2)
[cos*(v,/2) — B3 sin}(v,/2)]

M,(v,) = 2 [ tan~'(8, tan(v,/2)] - ] (109)

555
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IV. Probability of Close Approach Between
Satellites in Circular Orbits

Full Circular Orbit Method

The purpose of this section is to develop a method for calculating the

B

probability of close approach between two satellites in circular orbits.

To simplify the analysis, the close approach of two satellites is

IS

redefined to be whenever the angle between the radius vectors of satellite 1

g and satellite 2 (angle D) is less than or equal to some angle threshold D,
- where D is equal to the angle between the radius vector of satellite 1 and
ﬁ satellite 2 when the distance between the two satellites is equal to the
E: distance threshold of close approach, d,,. When a close approach is possible
i' (Ir,—r,l < dqy), the plane trigonometry law of cosines (7:196) can be used to

solve for D'ru as a function of d.m:

FaOE

d3y = ' + r, - 2rrcos(Dyy)

P+ - d
- 2 TH
ﬁ Dyy = cos *[ ‘L"”?r_,?{"‘ ] (110)
A
S where
W r, = magnitude of the radius vector of satellite 1
hY) r, = magnitude of the radius vector of satellite 2
l d,, = distance threshold for close approach
; g: Dy = angular distance threshold for close approach
; o . . . .
g Note that using an angle threshold of D, is completely equivalent to using

Vo 2o




a distance threshold of d.,, so long as both satellites are in circular orbits
and D, is computed using Eq (110). The use of D, simplifies the

remaining mathematics, because by proje.ting the position of satellite 2 onto

a sphere of radius r;, spherical trigonometry can be used to obtain the limits

of integration.

Projection of
Satellite 2's
Orbit

(1~ 5]

Lo rig

b e el e ag W

Satellite 1

I3

2% |

™
"
,’A
L]
’
L
'l
X
o
¢

1.5
>y

R AL

Figure 3. Spherical Geometry of Circular Orbit Close Approach
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Figure 3 shows the orbital path of satellite 1, and the projection of the

l orbital path of satellite 2. For circular orbits, the position of zero mean
- anomaly is arbitrary, so for convenience, the mean anomaly of both satellites
¢
)

(M, and M,) are assumed to be zero where the two orbital planes cross in

the northern hemisphere. When the mean anomaly of satellite 1 is known, a
close approach is possible whenever some portion of the projection of satellite

2's orbit comes within D, (great circle arc) of satellite 1. The probability
of close approach (P;,) can be determined by integrating the joint density
function (see Eq (10)) over the region of M, and M,, where D is less than
or equal to D.... If M,, and M, are the unknown limits of integration over

) M,, then P,, expressed in terms of M,, and M ,, is equal to

1’
Mn Mzz dM.dM

Pex = f f e (111)
Mll le

M M
1 /M 23 |
g Poy = f (4,7'!) dM, |

:;- Mll MH

o

v AM, = M,, - M,, (112) :
-

W, "M '
> 12 AM ‘
P P, = 1 M, (113)

- Mn

4

| Two more things are needed to compute P,,. First, an equation for

AM, as a function of M, is needed. Second. the integration limits over M,

BRI i e R N S B N
NN R IRCR Y '+ SRR - KO Y eI NG R s WU )



must be found for which a close approach with satellite 2 is possible. Using
spherical trigonometry (7:198—-200), Eqs (114) and (115) can be derived (see

Figure 3):
sin(M,)/sin(7/2) = sin(x)/sin(6)
sin(x) = sin(0) sin(M,) (114)
cos(Dyy) = cos(x)cos(AM,/2)
AM, = 2 cos=![cos(Dyy)/cos(x)] (115)
where

x = angle between the radius vector of satellite 1 and the orbital plane
of satellite 2
Given the trigonometric relationship (7:188)
cos(x) = [1-sin®(x))'?
Eq (114) can be used to obtain an equation for cos(x):
cos(x) = {1 — sin*(8)sin*(M,))'? (116)
Substituting Eq (116) into Eq (115), yields vhe final equation for AM,:

8M, = 2 cos™(cos(D ry)/[1-sin*(O)sin*(M,))') (17

The integration regions can be found through Eq (114), by replacing x
with D, and M, with M, and then solving for M.

43




sin(Dyy) = sin(8) sin(M)
sin(M) = sin(D )/sin(6)

M = sin~!sin(D,)/sin(8)) (118)

If sin(Dgy)/sin(0) is less than 1, then there are two regions. The first

region is from —M to M, and the second is from w—M to 7w+M.
If sin(Dyy)/sin(6) is greater than 1, then the integraticn is from 0 to

2m, because in this case, for 0 < M, < 2m , there is always some chance of

a close approach with satellite 2.
Assuming that there are some places in satellite 1's orbit where there is

no possibility of a close approach by satellite 2, then the final equation for

Pg, is

M . .
P, = f Mcos '{cos(o,,)/nz;:m*(om'(u.)]"'} N,

, qu+M cos” {cos(Doy)/[1 ~sin' @)ein M) (1)

|
a—M 2n

There is no closed form solution for the equation above, so numerical
integration must be used to obtain the final solution for probability of close

approach between two satellites in circular orbits.
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Circular Orbit Approximation Method

In the previous section no closed form solution could be be found for

P

ox Detween two satellites in circular orbits. However, there is a special

case which does have a closed form solution for Pm

Assume that satellite 1 and satellite 2 are in circular orbits where 1Dl
is small, and @ is not small. This also implies that M, and M, (or M —m)

are also small. For small absolute values of u, the following aj proximations

will be of use (with 3rd order effects and higher discarded)(7:454—457):

sin(u) = u
cos(u) & 1 - u?/2
(1 -V =1 — u¥/2

/(1 —uw) 21 +

Eq (117) can be re—written as

cos(AM,/2) = cos(Dyy) / (1 — sin®(8) sin*(M))]"/? (120)

Substituting the small value approximations into Eq (120) and then

simplifyinz yields

il e

Ea: (1-AM3/8) = (1-D3,/2) (1 + sin®(6) M}/2)

|

& 1 - AMY/8 = 1 + sin%(8) M?/2 — D,/2 - D=sia}(8) M?/4

N 4th Order
13 AM:/8 = D?IH*/Q ~ sin?(f) Mz‘,g

-
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axs BN

AM, = 2 [ D}, — sin}(8) M? ]2

I

2

AM, = 2 sin(8) [ Di,/sin*(8) — M3 ]\ (121)

When M —7 is very small, then another set of equations must be used.

If M, = m+u , where the absolute value of u is small, then the following

approximations can be used:

sin(M,) = sin(m—u)

sin(M,) = sin(m) cos(u) + sin(u) cos(m)

| S

sin(M,) = -sin(u)

¥ i

ol

sin(M,) = —u

(122)

A

sin(M,) £ 7-M,

e
Pal's

-
',I

Substituting the small value approximations (with small M —) into Eq

(120), results in

.~ |

0 (1-aM}/8) = (1-D4,/2) (1 + sin®(8) (7-M,)*/2]
ol
- 1 - AM}/8 = 1 + sin?(0)(m-M,)?/2 ~ D3,./2 - W—;M,)’M
; Y 4th Order
N AM3/8 = D3,/2 - sin*(8) (m—-M))*/2
AM, = 2 [ D}, - sin’(8) (m—-M,)? }'/?
AM, = 2 sin(0) [ D3, /sin®(8) ~ (m-M))? na (123)

By substituting the small value approximations into Eq (118), the

By % "
o

%
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limits of integration can be found:

M = D /sin(6) (124)

Eqs (121) and (122) are approximations for Eq (117), and Eq (124) is an
approximation for Eq (118). Substituting Eqs (121), (128), and (124) into

Eq (119), results in:

5
d

M

1

M 5in(g) [ D2 /sin?(@) — M2 2
P A~ X d
-M

I m+M 2 /ein? — (M ) N/
. J’ sin() [ D3 /sin (az (m=MP I i os)
2m 1
E m—M
where Eq (124) is used to compute M. Given that (7:411)
J @=uh)V? du = [ u (a*-u?)? + a® sin~}(u/la]) }/2 (126)

Eq (125) can be directly integrated by making the following substitutions
into Eq (126):

5% K X X 2B

For small M;: For small M —m:
a = Dgy/sin(0) a = Dg,/sin(0)
u=M, u = m-M,
du = dM du = -dM

Integrating Eq (125) and simplifying results in
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& Bl BN =
o
Q
»

I
w o=
aﬂ
| —— |
e
N
(4]

B
~
<D
N”
<
[ ]
S —
=
[ ]

D? M Dy /sin(6)
rta e ;m sin“(————————'D /s;n (e)l)]
y sin’(8) ™ — Dy /sin(6)
K sin(0) . 13
gl [(n—Ml) (s_uT}(nei (ﬂ—Ml)’)
7+ (D gy /5in(8))]

(6) sin D gy /5in(0)] 71— [D e /5in(6)]
TH

P - sin(0) [ D3 (17) Dia (_ ﬂ')
CA ™ 4nt | sind®) \2/  sin*(0) 2

sin®) [ D2, 1 ) D’m (11')]
T 4m [sin"’(()) (' 2] sin}(6) \2

i
i
i
f
|

p _ Sin(@) [ 2m D},
CA = 4p? sin®(0)
Dl
Por = 3 sin@) (127)

t
.
¢
¢
20
.
My
.

Equ (128) is the closed form approximate solution for P,,, where satellite 1

and satellite 2 are in circular orbits, D, is small, and 0 is not small.

|~
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V. Algorithm Verification

Analysis Software

To verify the algorithms from the previous chapters, three computer

programs were created.

g The first program is called Statistical Simulation of Probability of Close
§ Approach or SSPCA. SSPCA queries the user for a close approach distance
threshold and for a set of orbital parameters for satellite I and satellite 2
@ and then computes the probability of close approach between both satellites
E through a statistical simulation. The first step in this process is to select
) two random numbers that are uniformly distributed between 0 and 27 to
:E represent the mean anomalies of the two satellites. For the selected mean
a anomalies, SSPCA calculates the distance between the two satellites. If the
computed distance between the two satellites is less than or equal to the
;? input distance threshold, then a close approach occurs. This process is
repeated 100,000 times, and a count is kept of how ma.. - close approaches
! occurred. Eq (128) is then used to calculate the simulated probability of
EI' close approach:
A
S P, = ng, / 100,000 (128)
E. where P is the simulated probability of close approach, and ng, is the
- number of close approaches that occurred in the simulation.

The second program is called Circular Orbit Probability of Close

ﬁ Approach or COPCA. COPCA first queries the user for a close approach
2
N
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i

i

distance threshold and for a set of orbital paramesers for two circular orbits.
COPCA then computes the probability of close approach between the two
satellites using both the full and the approximate circular orbit methods of
calculating probability of close approach that were described in chapter IV.

The third program is called Elliptical Orbit Probability of Close
Approach or EOPCA. EOPCA queries the user for a distance threshold and
for a set of orbital parameters for the two satellites and then computes the
probability of close approach using the elliptical orbit method of calculating
probahility of close approsch that was described in chapter III.

The numerical integration in both the COPCA and EOPCA programs
were performed using Simpson’s rule with an step size of approximately

2m/10,000 radians.

Statistical Simulation of Probability of Close Approach

For analysis purposes, assume that the analytically derived probability

of close approach (P.,) is correct. For large sample sizes and values of both

P., and (1-P;,) which are not small, the number of close approaches that

occur in the statistical simulation can be approximated by a normal

distribution with a mean of (5:225-226)

— 0
n,, = ng P, (129)
where
n,, = mean number of cluse approaches in the simulation.
n, = number of samples or iterations in the simulation.
50
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and a standard deviation of (5:225-226)
ay = [ ng Pg, (1-Pg,) ' (130)

Likewise, by dividing both Eqs (129) and (130) by ng Pg can be
approximated by a normal distribution with a mean of P,,, and a standard

deviation of

= [Pg, (1=-Pg,) / ng J/? (131)

BSS BN

Using Eq (131), the difference between Py (see Eq (128)) and P, can

now be found in terms of standard deviations. For a perfect normal

A

.

distribution, the absolute value of the difference between P and P, will be

Ly

less than .6745 g, for .5 of the simulation runs, and less than 1.96 g, for

AR

.95 of the simulation runs (7:578). These two thresholds are tests that can

determine how well the simulated solution for probability of close approach

matches the analytical solutions for P, from the COPCA and EOPCA

ﬁ programs.

g Test Cases

:‘ Table 2 contains a list of the orbital parameters of satellite 1 and
;}‘; satellite 2 that are held constant through all test cases. Table 3 contains a
5 list of the orbital parameters of satellite 1 and satellite 2 for each of the 16
” test cases that were used to verify the probability of close approach
2

algorithms described in chapters III and IV. Through all test cases, the
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eccentricity of both satellites varied from 0 to .5, with the eccentricity of

both satellites being the same within each test case.

For convenience, the

longitude of the ascending node of both satellites and the inclination of

satellite 1 were set to 0° so that the inclination of satellite 2 would equal to

the angular separation of the two orbital planes.

TABLE 2

Orbital Parameters Held Constant Through All Test Cases

Orbital Parameters

Satellite 1

Satellite 2

Perigee Radius
Inclination
Argument of Perigee

Longitude of the Ascending Node

7000 km

Oo

0°

0°

7500 km

varies

90°

00

Test cases 1-8 (orbits with an eccentricity of 0 or .1 ) were run

through the SSPCA program with distance thresholds of 1000, 2000, 4000,

8000, 12000, and 20000 km. Test cases 9—16 (orbits with an eccentricity of

.3 or .5) were run through the SSPCA program with distance thresholds of

4000, 8000, 12000, and 20000 km, making a total of 80 SSPCA runs.

All circular orbit test cases (test cases 1-—4) were run through the

COPCA program with distance thresholds of 1000, 2000. 4000, 8000. 12000.

20000 km. making a total of 24 COPCA runs.

52

AN AT R N ARG TR R P g CE U PR ST R BRE G i S A A et LA
i G T T R A AR L S TN T RO, CE TR 0% ST T RO R AN S AT A



TABLE 3

_

Orbital Parameters of Test Cases

i
Orbit
Test Eccentricity of Angular Separation

g Case # Both Satellites of Orbital Planes
4
é 1 .0
E 2 0 Qe

3 .0 30°
E 4 .0 60°
3 5 0 90°
i 6 | v

7 1 30°
8 1 60°
' 9 1 9(r
&y

10 .3 0°
E 11 3 300
o 12 3 60°
Y
5 13 5 0°
O\.
" 14 5 300
s'
. 15 5 60°
§ 16 ) 90°

;X
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All test cases were run through the EOPCA program. All test cases
with an eccentricity of 0 or .1 (test cases 1-8) were run with distance
thresholds of 1000, 2000, 4000, 8000, 12000, and 20000 km. All test cases
with an eccentricity of .3 to .5 (test cases 9—16) were run with distance
thresholds of 4000, 8000, 12000, and 20000 km, making a total of 80 EOPCA
runs.

Note that the distance thresholds of 1000, and 2000 km were only used
in SSPCA, COPCA, and EOPCA runs involving test cases with an
eccentricity of .1 or less. This is because when the distance threshold drops
below 4000 km and the test case eccentricity is .3 or larger, the probability
of close approach is generally too small for a statistical simulation to be of

much value.
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VI. Results and Discussion

Tables B—1 and B-2 in Appendix B contain the test results of the

o
3 COPCA program, along with the corresponding simulation results. Table 4
" shows how well the simulated P;, matched the P, computed in COPCA
cl

for all runs where P,, is not equal to 1. Runs with a P, of one were
excluded from Table 4 because the computed P,, always equaled the

simulated P,, when the computed P, was equal to one, and because a,

=l =%

equals zero when P, equals one. The mean error listed in Table 4 is the

==

mean of the error (scaled by 0") between simulated P,, and analytical P,

&

{: for all COPCA runs with a P, less than one.

(7

i TABLE 4

v Simulated Probability of Close Approach Versus
v COPCA Probability of Close Approach

Fraction of
N, COPCA Runs Normal Simulated
Ty With Errors Distribution P.,
5
- Less Than .8745 o, .5000 .5000
R4 Less Than 1.96 o, 9500 1.0000
i
\ Mean Error (0)) .0000 4445
.‘\ 4
Y
a} Tables B-3 and B-4 in Appendix B contain the test result< of the

COPCA program. where the probability of close approach is computed using

S5

P -0,

l\. 'b

5 -, o Wy ¢
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both the full circular orbit method and the circular orbit approximation

method described in chapter IV. For all runs with a P, less than .01, the
circular orbit approximation method agreed with the full circular orbit

method to within 1%. When the angle between the orbital planes is 60° or
greater, the error between the full circular orbit method and the circular
orbit approximation method was generally less than 3% when the computed

P., was less than 5%. As expected (see Eq (127)), given the distance

cA
threshold, the error in the approximation method is inversely proportional to
the angle between the two orbital planes. Similarly, given the angle between
the orbital planes, the error in the approximation method is directly

proportional to the distance threshold.

TABLE §

Simulated Probability of Close Approach Versus
EOPCA Probability of Close Approach

Fraction of
EOPCA Runs Normal Simulated
With Ecrors Distribution Pc,
Less Than .6745 a, .5000 5000
Less Than 1.96 a, .9500 9657
Mean Error (a') .0000 0074

Tables B-5 through B-10 in Appendix B contain the test results of

the EOPCA program. along with the corresponding simulation results. Table
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5 shows how well the simulated P,, matched the P,, computed in EOPCA
for all runsl where P, is not equal to 1. As with the COPCA test results,
runs with a P, of one were excluded from Table 5, because the computed
P;, always equaled the simulated P,, when the computed P;, was equal to

one, and because a, = 0 when P, = 1. The mean error listed in

Table 5 is the mean of the error (scaled by (T') between simulated P, and
analytical P, for all EOPCA runs with a P, less than one.

The probability of close approach computed by both the COPCA and
EOPCA programs favorably matches the simulated probability of close
approach computed by the SSPCA program. However, the mean error for

the 20 COPTA runs with a computed P,, less than one (see Table 4)

indicates that a possible bias exists between simulated P;, and the analytical

P., computed by COPCA. Similar biases exist within the EOPCA test

CcA
results when EOPCA runs with only the same eccentricity are examined.

When all 72 EOPCA runs with a computed P, less than one (see Table §)
are considered, there does not appear a bias. Given the limited number of

circular orbit test cases, the small bias in the COPCA test results is not

considered significant.
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VII. Suggestions and Recommendations

To develop a method to calculate the probability of close approach
between two satellites. two major assumptions were made. First. all orbital
elements. except for true (or mean) anomaly, were assumed to be constant
over time. Second. the mean anomalies of both satellites were assumed to
be independent random variables that are uniformly distributed between 0
and 2m7.  While these assumptions greatly simplified the derivation of
probability of close approach. they also limited its usefulness.

Three follow—up studies are recommended. The goal of the first
study would be to develop methods to calculate probability of close approach
between two satellites in elliptical orbits, where there are linear perturbations
to the argument of perigee and the longitude of the ascending node of both
satellites. In this case, both argument of perigee and longitude of the
ascending node would be treated as linear functions of time. The goal of
the second study would be to develop methods to calculate probability of
close approach between two satellites in elliptical orbits where the duration
of the specified time interval is too short, or the ratio of the orbital periods
of the two satellites are such that the mean anomalies of both satellites are
not independent. The goal of the final study would be to find ways to
reduce the computational expense involved in calculating probability of close
approach. In this paper, numerical integration was used to directly calculate
the probability of close approach between two satellites. This approach can
be used to accurately calculate the probability of close approach between any

two satellites with eccentricities less than 1.0, but it can be computationally
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expensive. For two satellites with an eccentricity less than .3, it is possible
that a series approximation for probability of close approach could be found
that would offer acceptable precision, and at much less computational
expense than methods that use numerical integration. For two satellites in
circular orbits, even simpler series approximations for probability of close
approach could wve possible.  Both forms of series approximations for

probability of close approach merit further investigation.
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Types of Close Approach
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Type 1 Close Approach

A type 1 close approach occurs when

I
o

A
oo

5 = e EE R 8
(o
=<
A
o

When there are 0 valid solutions, then

Vyu = 0 Vag = 0
Yapa = 0 Vayg = 0
<
i When there are 2 valid solutions, then
& Vyy = 27 — 6, Vo = 0
&
g Vopa = 27 — 6, Vo = 0
- When there are 4 valid solutions, then
3
v,,,, = 0 Vyp, = 21 — 0
» m 7 3/31 4
Vs = 9 Vye = 27 — 6,
T
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Type 2 Close Approach

A type 2 close approach occurs when

l. y,50
2. pdyy £ B
3. pdy; > B,

It is not possible to have 0 valid solutions in a type 2 close approach.

When there are 2 valid solutions, then

=0

Vana 2

Vapy = 2m - 6

1

When there are 4 valid solutions, then

U'./u =0

3

Vapy = ©

T

A". S *‘ 0 o0 Q YLV ‘\- y -,',_»- A
L R S AN e

Vaa

Vapn =

Van =

Vaiaa

=27 -~ 0
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Type 3 Close Approach

A type 3 close approach occurs when

It is not possible to have 0 valid solutions in a type 3 close approach.
g When there are 2 valid solutions, then

= -6

Vam 2 Vi =

»i Vape = 9y Vapn =

When there are 4 valid solutions, then

! Van = —8, Vi = 8

Vapa = 9, Vapa =
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Type 4 Close Approach

A type 4 close approach occurs when

l. y,20
2. pdyy > B,
3. pdyy > B,

When there are 0 valid solutions, then

Vgp = 0 Vo = 0

Vg = 270 Vajas = 0
When there are 2 valid solutions, then

Vyu = 8, — 2m Vg = 0

Vapa = 0, Vaps = 0
When there are 4 valid solutions, then

Vyy = 8, — 27 Vosy = 6,

Vapa = 8, Vs = 6
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Type 5 Close Approach

- =5 B

A type 5 close approach occurs when

o= E
p—

y, >0
" 2. pdy S B,
*.
A

When there are 0 valid solutions, then

ﬁ Van = 0 Vapn = 0
g

Vapa = 0 Vapsa = 0
\
ﬁ When there are 2 valid solutions, then
] Vau = 8 Vg = 0
b
Ly
! Vyna = 8, Vajsg = 0
5 When there are 4 valid solutions, then
‘
A
Vo = 8, Vyy = 27 = 8,
R
Vg = 8 Vysg = 27 — 6,
.
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Type 6 Close Approach

A type 6 close approach occurs when

= R = B

l. y,>0
g 2. pdyy = B,
3. pdy > B,

LX)

It is not possible to have 0 valid solutions in a type 6 close approach.

When there are 2 valid solutions, then

[ s

';:: Van = & Vo = 0

‘ Vapa = 27 — 8, Vyjsg = 0

i

When there are 4 valid solutions, then

v

! Vym = 8, Vysy = 2 — 6,
Vapg = 7 — 8, Vag = 27 — 8,
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Type 7 Close Approach

A type 7 close approach occurs when

l. y,>0

i 2 55 R
)
o
a
=
A\
o

It is not possible to have O valid solutions in a type 7 close approach.

When there are 2 valid solutions, then

B &=

Vyn = — 8 Vo = 0

Y i

Vapz = 9 Vijag

L

When there are 4 valid solutions, then

ey

=21r-—9,

Vo Van

(= |
I
|

-

Vaa = 8, Vyn = 27 — 6,
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Type 8 Close Approach

A type 8 close approach occurs when

L.y, >0
2. pdgy > 5
3. pdgy; > B,

ey Ol 2 R =S B

When there are 0 valid solutions, then

Vgy = 0 Vo = 0

B RN

Vaa = 2r Vans = 0

R

When there are 2 valid solutions, then

g Vi = 6, Vy = 0
‘;
N4

Vapa = i - 92 Vapn = 0

When there are 4 valid solutions, then
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Test Results
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TABLE B-1

COPCA Test Results For Distance Thresholds Less Than 4000 km

:::*:
B Angle
Distance | Between

& Threshold| Orbital | COPCA |Simulation| Simulated
! (km) Planes Poy a, Pos Error (cr') Error (%)
g 1000 0° .038068 | .000805 | .038510 .7306 1.16
E 2000 e .085327 .000883 .086210 1.0000 1.03

1000 30° .004580 .000214 .004670 4206 1.97
R
& 2000 30° 023638 | .000480 | .024010 7750 1.57
¥ 1000 60° | .002632 | .000162 | .002790 [  .9753 6.00
. 2000 60° .013287 .000362 .013250 -.1022 -.28
. 1000 90° | .002278 | .000151 | .002370 .8093 4.04
2000 90° | .011471 | .000337 | .011100 | —1.1009 | -3.23
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TABLE B-2

COPCA Test Results For Distance Thresholds Not Less Than 4000 km

§, Angle
Distance | Between

g Threshold | Orbital | COPCA |Simulation| Simulated
. (km) Planes o, a, Po, Error (a") Error (%)
! 4000 o> | .176602 | .001206 | .178280 | 1.3914 9
@ 8000 0° 371487 | .001528 | .373250 1.15638 47

12000 o .620316 .001535 .620220 —-.0625 - N2
g 20000 o 1.000000 | .00000C | 1.000000 - .00
RN 4000 30° 128739 .001059 .129460 .6808 .56
¥

8000 30° .361425 .001519 .363150 1.1356 48
ﬁ 12000 30° 629654 | .001527 | .629590 | -—.0419 -.01
>,
o 20000 30° 1.000600 .000000 | 1.00000C - .00
! 4000 60° .058214 .000740 .058130 -.113% -.14

8000 60° 315640 001470 316940 .8840 41
w
s 12000 60° .671401 .001485 671640 .1609 .04
!‘ 20000 60° 1.000000 .000000 | 1.000000 - .00
.. 4000 90° 049658 000687 .050050 .5691 .79
< 8000 90° 233877 .001339 .233390 -.3637 -.21
- 12000 | 90° | .75452z | .001361 | .755730 | 8876 16
.._- 20000 90° 1.000000 .0000C0 | 1.000000 - .00
&
5
I
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TABLE B-3

COPCA Test Results Using Circular Orbit Approximation

For Distance Thresholds Less Than 4000 km

Angle
Distance Between COPCA
Tireshold Orbital COPCA Approximate
(km) Planes P, Eos Error (%)
1000 30° 004580 .004553 -.99
2000 30° .023638 .022873 -3.24
1000 60° 002632 .002629 -.11
2000 60° 013287 .013206 -.61
1000 90° 002278 .002276 -.09
2000 90° 011471 011437 -.30
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TABLE B-4

COPCA Test Results Using Circular Orbit Approximation
For Distance Thresholds Not Less Than 4000 km

Angle
Distance Between COPCA
Threshold Orbital COPCA Approximate
(km) Planes e I&on Error (%)
4000 30° 128739 .097981 —-23.89
8000 30° 361425 .433547 19.95
12000 30° 629654 - -
20000 30° 1.000000 - -
4000 60° 058214 .056569 -2.83
8000 60° 315640 .250399 —-20.70
12000 60° 671401 .897936 3.95
20000 60° 1.000000 - -
4000 90° .049658 .048990 -1.35
8000 90° 233877 216774 -7.31
12000 90° 754522 .604430 -19.89
20000 90° 1.000000 - -
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TABLE B-5

EOPCA Test Results For Circular Orbits With
Distance Thresholds Less Than 4000 km

Angle
Distance | Between
Threshold| Orbital | COPCA |Simulation|Simuixted
(km) Planes 5o a, Po, Error (a') Error (%)
1000 0° 038 8 .000605 .038510 7306 1.16
2000 0° .085327 .000883 .086210 1.0000 1.03
1000 30° .004580 | .000214 | .004670 .4206 1.97
2000 30° 023638 .000480 .024010 7750 1.57
1000 60° 002632 .000162 002790 9753 6.00
2000 60° .013287 .000362 .013250 -.1022 -.28
1000 a0° .002278 .000151 .002370 .8093 4.04
2000 90° L11471 .000337 .011100 | —1.1009 —~3.23
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TABLE B-6

EOPCA Test Results For Circular Orbits With
Distance Thresholds Not Less Than 4000 km

Angle
Distance | Between
Threshold| Orbital | COPCA |[Simulation| Simulated

(km) Planes 12 o, Pos Error (cr') Error (%)
4000 0° .176602 .001206 178280 1.3914 85
8000 0° 371487 .001528 .373250 1.1538 47

12000 0° .620316 001535 620220 —.0625 -.02

20000 o° 1.000000 .000000 | 1.000000 - .00
4000 30° 128739 | .001059 |, .129460 .6808 .56
8000 30° .361425 .001519 .363150 1.1356 A48

12000 30° .629654 | .001527 | .629590 | -.0419 -.01

20000 30° 1.000009 .000000 | 1.000000 - .00
4000 60° 068214 .000740 .058130 -.1135 —-.14
8000 60° .315640 .001470 .316940 .8849 41

12000 60° .671401 .001485 671640 .1609 .04

20000 60° 1.000000 .000000 | 1.000000 - .00
4000 90¢° .049659 .000687 .050050 5691 19
8000 90° 233877 .001339 .233390 -.3637 -.21

12000 o0e 754522 .001361 156730 8876 A6

20000 90° 1.00000V .000000 | 1.0C0009 - .0U
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TABLE B-7

EOPCA Test Results For Eccentricity of .1 With
Distance Thresholds Less Than 4000 km

Angle
Distance | Between
Threshold | Orbital | COPCA |Simulation|Simulated
(km) Planes Rey g, Po, Error (crp) Error (%)
1000 0° .021034 .000454 021520 1.0705 231
2000 0° 067767 .000795 .068180 5195 .61
1000 30° .002449 .000156 .002030 | —2.6859 -17.11
2000 30° 016417 .000402 016320 —.2413 -.59
1000 60° .001414 .000119 .001170 | —2.0504 -17.26
2000 60° .009292 .000303 .008960 | —1.0957 -3.57
1000 90° .001225 .000111 000950 | —2.4775 ~22.45
2000 90° .008027 | .000282 | .007530 | —1.7624 -6.19
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TABLE B-8

EOPCA Test Results For Eccentricity of .1 With
Distance Thresholds Not Less Than 4000 km

Angle
Distance | Between
Threshold| Orbital | COPCA |Simulation| Simulated

(km) Planes e a, Iy Error (0") Error (%)
4000 0° 154566 | .001143 | .155130 .4934 .36
8000 g° 327955 .001485 .329990 1.3704 .62

12000 0° 533222 | .001578 | .533210 | -.0076 -.00

20000 0° 1.000000 | .000000 | 1.000000 - .00
4000 30° 091240 .00091, .091410 .1866 19
8000 30° 313524 .001467 315190 1.1357 .53

12000 30° 535690 .001577 635530 -.1015 -.03

20000 30° 1.000060 .000000 | 1.000000 - .00
4000 60° .045010 .000656 .045230 3354 49
8000 60° .234065 .001339 .233720 -.2577 -.15

12000 60° .546098 001574 047590 9479 27

20000 60° 1.000000 .000000 { 1.000000 - .00
4000 90° .038555 .000609 .038810 4187 .66
800y 90° 179613 001214 178870 -.6120 -.41

12000 90 581394 .001560 582690 8308 oo

2000u 90° 1.000000 .000000 | 1.000000 - .0u
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TABLE B-9

EOPCA Test Results For Eccentricity of .3

Angle
Distance | Between
Threshold| Orbital | COPCA |Simulation{Simulated

(km) Planes Pa, a, P, Error (a") Error (%)
4000 0° .067156 | .000791 | .066410 | -—.9431 -1.11
8000 0° 226341 | .001323 | .226230 | -.0839 -.05

12000 0° .374049 | .001530 | .375610 1.0203 42

20000 0° 762220 | .001346 | .762770 .4086 .07
4000 30° 027733 | .000519 | .027410 | -—.6224 -1.16
8000 30° 192271 | .001246 | .191640 | —.5064 -.33

12000 30° 363538 | .001521 | .364400 5667 24

20000 30° 773937 | .001323 | .774410 3575 .06
4000 60° 013120 | .000360 | .013530 1.1389 3.13
8000 60° .109096 | .C00986 | .108750 | ~—.3509 -.32

12000 60° 302533 | .001453 | .301440 | -.7522 -.36

20000 60° 819091 | .001217 | .820710 1.3303 1.98
4000 90° .010933 .000329 .011360 1.2979 3.91
8000 90° 490637 1 .000905 | .090000 | -.0409 -.04

12000 90° .269083 | .001402 | .267690 | -.9936 -.52

20000 9(r 849413 001131 851050 1.4474 1.93
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TABLE B-10

EOPCA Test Results For Eccentricity of .5

Angle
Distance | Between
Threshold| Orbital | COPCA |Simulation] Simulated

(km) Planes 12, a, o Error (0’) Error (%)
4000 0° 015125 | .000386 | .014750 | -.9715 —-2.48
8000 0° .066378 | .000787 | .065430 | —1.2046 -1.43

12000 0° 185335 | .001229 | .185330 | —.0041 -.00

20000 0° 434822 | .001568 | .435010 1199 .04
4000 30° .002293 | .000151 | .002270 | -—.1523 -1.00
8000 30° 042547 | .000638 | .041490 | —1.6567 —2.48

12000 30° .150654 | .001131 | .150520 | -.1185 -.09

20000 30° 427634 | .C01564 | .427660 .0166 01
4000 60° .000682 | .000083 | .000610 | —.8675 | ~—10.56
8000 60° .010386 | .000321 010230 | -.4860 -1.50

12000 60° .108902 | .000985 | .108390 | -.5198 - .47

20000 60° .390383 .001543 .389900 -.3130 -.12
4000 90° .000434 .000066 .000430 —.0606 -.92
8000 90r 008820 .000296 .008590 -.7770 —~2.61

12000 90° 085002 | .000882 | .085920 1.0408 1.08

20000 90° 341475 | .001500 | .338930 | —1.6967 -.75
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C
C
SSPCA - Statistical Simulation of the Probability C
of Close Approach C

C

c

INTERFACE TO SUBROUTINE RNDINI(C)

END

INTERFACE TO REAL*8 FUNCTION RANDON(C]
END

PROGRAN SSPCA

CHARACTER YESNO=*4

LOGICAL*4 DEBUG. OBSCUR

INTEGER#4 I. J, K. ONE. TWO, CA, OCA

REAL+8 DX, DY, DZ, LR

REAL#8 N1, Al, Ei, INC1. NU1, ARGPA1, LONAN1, Xi(4&
REAL*8 N2, A2, E2. INC2, NU2, ARGPA2, LONAN2, X2(4)
REAL*8 DTH, RANDON., RANGE, DBLE

REAL*8 HALFPI,P1.TWOPI,DEGRAD,RADDEG

REAL*8 ER, DU, TU

CONNON /ADNIN/ DEBUG

CONNON /ASTRO/ ER., DU. TU

CONNON /CONPAR/ DX, DY. DZ. DR

CONNON /CONST/ HALFPI, Pl, TWOPI, DEGRAD, RADDEG
COMNON /SAT1/ N1, A1, El, INCI!. NUi, ARGPA1, LONANI. Xi
CONNON /SAT2/ N2, A2, E2, INC2. NU2, ARGPA2, LONAN2Z. X2
PARANETER (ONE=1, TW0=2)

ER = 6378.145D0

DU = 6378.145D0

TU = 806.8118744D0

PI=3.141592653589793D0

HALFPI=PI/2.0D0

TWOPI=2.0D0+PI

DEGRAD=P1/180.0D0

RADDEG=180.0D0/P1

D e T T *
* Intitialize Random Number Generator @
L L R e L L L LRSS »
CALL RNDINI

L L L L L R L .
* Input Orbital Elements of Sat | .
T L L T *

WRITE(s. 1000 ONE
READ (+.1010) Al
WRITE(» 10202 ONc
READ 7+.1010) EI
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WRITE(*,1030) ONE
READ (»,1010) INC1
WRITE(*,1040) ONE
READ (=,1010) ARGPA{
WRITE(*,1050) ONE
READ (=,1010> LONAN!

$e——cceccccccccccccccccccrccccccnncee *
* Input Orbital Elements of Sat 2 *
LT e L I L L L L Pt *

WRITE(*>,1000) TWO
READ (*,1010) A2
WRITE(=,1020) TWO
READ (*,1010) E2
WRITE(*,1050> TWO
READ (*,1010) INC2
WRITE(*,1040) TWO
READ (»,1010) ARGPA2
WRITE(#»,1050) TWO
READ (+,1010) LONAN2

D L L T »
* Input Simulation Limits *
LR L L L L L L L e »

WRITE(#.1060)

READ (*,1010) DTH

WRITE(+,10702

READ (»,1080) ITER

WRITE(+,1090)

READ (»,1100> YESNO

IF (YESNO(1:1) .EQ.'Y’.OR.YESNO(1:1) .EQ.'y"') THEN
DEBUG = .TRUE.

ELSE

DEBUG = _FALSE.
ENDIF

L ittt *
* Convert the input angles from deg »
s to rad »
Semccccnrsnnscrrrrcccccce s r e ce s e .

INC! = INC1 ¢ DEGRAD
ARGPA! = ARCPA1 ¢ DEGRAD
LONAN! = LONAN! ¢ DEGRAD
INC2 = INC2 » DEGRAD
ARGPAZ = ARGPAZ » DEGRAD
LONAN2 = LONAN2 ¢ DEGRAD

L J

Clear the two event counters:
OCA = Obscured Close Approach

2 R 5

2 gt

QG QO

. CA

= Close Approach
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100

1000

1010
1020

1030
1040
1050

1060
1070

1080
1090
1100
1110
1120

1

!

DO 100

I=1 ITER

Mt = TWOPI = RANDONO
N2 = TWOPI *= RANDOMO
DR = RANGEO
IF (DEBUG)> WRITE (=,1110> Mi, N2, DR
IF (DR .LE. DTH) THEN
IF (OBSCUR(>> THEN
OCA = OCA + |

ELSE

CA=CA + |

ENDIF
ENDIF

CONTINUE

WRITE (>,

FORNAT
FORNAT

FORNAT
FORNAT
FORNAT
FORNAT
FORNAT

T3€.°

1120 A1, A2, E1, E2, INC1+RADDEG, INC2#RADDEG,
ARGPA1+*RADDEG, ARGPA2+RADDEG. LONAN!*RADDEG.
LONAN2+RADDEG, DTH. ITER.

OCA. DBLE(OCA) /DBLECITER) .,
CA. DBLE(CA)/DBLE(ITER)

(/' Input the semi-major axis of Sat '.Il,
"in km: V)

(F16.12)

(' Input the eccentricity of Sat '.I1.': '\)

(' Input the inclinition of Sat '.Il.
' in degrees: '\)

(' Input the argument of perapsis of Sat '.Il,
" in degrees: '\)

(' Input the longitude of the ascending node ',
"of Sat '.I1.' in degrees: '\)

(/' Input distance threshold in km: '\)

(' Input the desired number of iterations °.

'(7 digits maax): '\)

an

(* Run SSPCA in DEBUG mode (Y/N)? '\)

(A4

(/7' Ni=’ F12.10.4X.'N2=’ F12.10.4X. 'RANGE=", F12 6)

(/T21,'Sat 1'.T41.'Sat 2'/T16, '=~=~eccccccccca.

---------------- /7" a (kx)' . TI€.Fl€.10.4X.

2 F16.10//7' e¢'.T16.F16.10.4X.F16.10//

3
4

" inc¢

(deg) ' . T16,F16.10.4X Fi6.10//

' argument of' T16.F16.10.4X.F16.10/"' perigee (deg)'//




| X R S I XN Y O % G S e

P - -

gy
e ]

damn 2=n B SR

QOO0

Q

Ny Noy On

8
9

' long of asc’,T16,F16.10,4X,F16.10/’ node (deg)’///
' Distance Threshold for Close Approach: ’
F16.10," km’///
T48, 'Fraction’/’ Iterations ’,17.T46,’'===-=-====-< 4
> Close’.T14,17,’--Obscured by the Earth--',F12.10/
' Approaches’'/T14,17, ' ===~==~ Unobscured==------ ",
F12.10//
END
s *
* *
* Function OBSCURO *
* *
D e L S et DL *
LOGICAL*4 FUNCTION OBSCURO
B T e L TR P P *
LOGICAL*4 DEBUG
INTEGER#4 I. J. K
REAL*8 NDRANG, DX. DY, DZ. DR, ODTH. RADICAL
REAL*8 Ni. A1, E!, INC!, NUi, ARGPA!1, LONAN1, X1(4
REAL*8 N2, A2, E2, INC2, NU2, ARGPA2, LONAN2, X2(4)
REAL#8 HALFPI PI, TWOPI, DEGRAD,RADDEG
REAL*S8 ER, DU, TU
CONNON /ADNIN/ DEBUG
CONNON /ASTRO/ ER. DU. TU
CONNON /CONPAR/ DX. DY, DZ. DR
CONNON /CONST/ HALFPI. PI. TWOPI., DEGRAD. RADDEG
COMMON /SAT1/ Ni. A1. E1. INC1, NU1. ARGPA!l. LONANi, X!
CONNON /SAT2/ N2, A2, E2. INC2. NU2, ARGPA2, LONAN2, X2
e e L P ot »

NDRANG = -1D0 = ( X1(1)sDX
= NDRANG / Xi<4d) / Tn
IF (DABS{NDRANG) .GT. 1DO) NDRANG = DSICN( 1DO. NDRANG)

NDRANG

NDRAKG

= DACOS (NCRANG)

*+ X1(22:571 + X1(3)+DZ )

IF (DEBUG) WRIfE(*.1000) NDRANGsRADDEG
IF (NDRANG.4T.HALFPI .OR. X1(4)+DSIN(NDRANG) .GE.ER) THEN

OBSCUR
ELSE

= FALSE.

ODTH = X1(4) *= DCOS(NDRANG
RADI'. L = ODTH » ODTH - X1(4>eX1(4) + EReER

IF (KADICAL .GE. ODO) THEN

ODTH = ODTH - DSQRT(RADICAL)

ELSE

IF ( DSQRT( DABS(RADICAL) ) .GT. SD-if ) THEN

WRITE (». 1010 ODTE.
~1D0 « DSQRT (-RADICAL)

ENDIF
ENDIF
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IF (DEBUG) WRITE (»,1020) DR, ODTH.

1 DSIGN(DSQRT (DABS (RADICAL)) ,RADICAL)
IF ¢ DR .GT. ODTH) THEN

OBSCUR = .TRUE.

ELSE
OBSCUR = .FALSE.
ENDIF
ENDIF
RETURN
1000 FORMAT (//' The Nadir Angle from Sat 1 to Sat 2 ’,
1 'is (deg):’'.F16.10)

1010 FORMAT (//’ Error! Negative Radical. ODTH=’,F16.10,
2 4X, 'RADICAL=', 1P,D12.5,0P)

1020 FORMAT (//’ DR=’ F16.10,4X,'ODTH="' F16.10,4X. RADICAL=",
3 1P.D12.5.0P)

END
C L e et L et L LD L L L B Lt e L *
C * *
C Function RANGEQ *
C »
C R et L L L DL L L LR Y i *
REAL*S FUNCTION RANGEOQO
C  $ecccnccanncrcvccwconccecrcccccccccace *
LOGICAL¢4 DEBUG
INTEGER#4 I, J, K
REAL+*8 NU, XP(3). R(3.2)>, DX. DY, DZ. DR
REAL*8 M1, A1, E!. INC1. NU1, ARCPA1. LONAN!, X1(4&)
REAL»8 N2. A2, E2. INC2, NU2. ARGPA2, LONAN2, X2
REAL+*8 HALFPI.PIl.TWOPI, ,DEGRAD,RADDEG
REAL*8 ER, DU, TU
CONNON s/ADNIN/ DEBUG
CONMON /ASTRO/ ER. DU. TU
CONNON /CONMPAR/ DX. DY. DZ. DR
CONMNON /CONST/ HALFPI. PI., TWOPI., DEGRAD. RADDEG
CONNON /SAT1/ Nt. A1, Et. INC{, NU1, ARCPA!., LONAN!. X!
COMHON /SAT2/ N2, A2, E2. INC2. NU2, ARGPA2, LONAN2. X2
{  $rcccccecceccccccccncccccccncccccccccea .
c . Compute True Anomaly of Sat | *
C $rmmcecmccccrconncccccc e rrerrcana .
NUI = NUC N1, EID
C L L L LT T Y Y T 2 2 »
c » Compute the Radius of Sat 1 »
C L LI e L T R R L T L R L L L LY '
X130 = Al o ¢ Ei#Ei> /7 (1DC « E1DCCS(NU:I))
C L T L .
C ¢ Compute the position of Sat | in
c . Perifocal Coordinate Frame .
85
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XP(1) = X1(4)=DCOS(NU1)
XP(2) = X1(4)*DSINCNUD

XP(3) = 0DO

#mcrmcccemccccccerercrcccrcrrccccacace- *
* Compute the elements of the *
* transformation matrix to transform *
* from the Perifocal Coordinate *
* Frame to the Geocentric Equatorial »
* Frame. *
S it s *

R(1.1) = DCOS(LONAN1)*DCOS (ARGPA1) -
DSIN (LONAN1) *DSIN (ARGPA1) *DCCS (INC1)

R(1.2) = - DCOS(LONAN1)*DSINCARGPA!) -

DSIN(LONAN1) *DCOS (ARGPA1) *DCOS (INC?)
DSIN(LONAN1) «DCOS (ARGPA1) ¢

DCOS (LONAN1) «DSIN (ARGPA1) *DCOS (INC1)
- DSIN(LONAN1) #DSIN(ARGPA1) ¢

DCOS (LONAN 1) *DCOS (ARGPA1) «DCOS(INC1)
R(3.1> = DSIN(ARGPA1)=DSIN(INC!)
R(3.2) = DCOS(ARGPA1)*DSIN(INC!)
IF (DEBUG) WRITE(s.1000) ((R(1.J), K J=1,2) I=1.3)

o
~
N
—
~
"

=4
~
()
(3]
P
[ ]

» Compute the position of Sat | in »
s the Geoceniric Equatorial Frame. =
b ettt b *
X1(1) = R(1.1)sXP(1) + R(1,2)sXP(2)
X1(2) = R(2.1)sXP(1) ¢ R(2.2)+XP(2)
X1(3) = R(3.1)#XP(1) ¢ R(3.2)3XP(2)

L L L »
¢ Compute the True Anomaly of Sat 2 =
R L bt D D L PO .
NU2 = NU(C N2, E2)

R L L L L D L T P P .
. Compute the Radius o¢f Sat 2 »

R I L T L L L L L ettt »
*» Compute the position of Sat | in »
. Perifocal Coordinate Frame *
L L L L L LT L T T A ™

XP(1) = X2(4)=DCOS(NUL}
XP(2) = X2(4)DSIN(NU2)
Xp(3) = QDC

b fre ]
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ii C * Compute the eiements of the .
! c ¢ transformation matrix to transform ¢
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* from the Perifocal Coordinate *
* Frame to the Geocentric Equatorial *
* Frame. *

Qoo

R(1.1) = DCOS(LONAN2) *DCOS (ARGPA2) -

1 DSIN(LONAN2) «DSIN (ARGPA2) *DCOS (INC2)
R(1.2) = - DCOS(LONAN2) *DSIN(ARGPA2) -

1 DSIN (LONAN2) *DCGS (ARGPA2) *DCOS (INC2)
R(2,1) = DSIN(LONAN2) *DCOS (ARGPA2) +

1 DCOS (LONAN2) *DSIN (ARGPA2) *DCOS (INC2)
R(2,2) = - DSIN(LONAN2) *DSIN (ARGPA2) +

1 DCOS (LONAN2) *DCOS (ARGPA2) *DCOS (INC2)
R(3.1) = DSIN(ARGPA2) *DSIN(INC2)

R(3.2) = DCOS(ARGPA2) *DSIN (INC2)

IF (DEBUG) WRITE(#,1010) ((R(I.J),J=1,2) I=1 3

* Compute the position of Sat 2 in =
* the Geocentric Equatorial Frame. =

QO

X2(1) = R(1,.1)=XP(1) + R(1,2)*XP(2)
X2(2) = R(2.1)*+XP(1) + R(2,2)*XP(2)
X2(3) = R(3.1)*XP(1) + R(3,2)*XP(2)
DX = X2(1) - X1l
DY = X2(2) - X1(2)
DZ = X2(3) - X1(3)
DR = DSQRT(DX*DX + DY*DY +DZ*DZ)
IF (DEBUG) THEN
WRITE(*,1020> NU1*RADDEG, NU2+RADDEG
WRITE(*,1030) (X2(I).I=1,4), (X1 (D I=1 &),
1 DX. DY, DZ, DR
ENDIF
RANGE = DR
RETURN

1000 FORNAT (///' Sat | R-matrix to transform from Perifocal °'.

1 "to Geocentric Equatorial Frame.'///
2 ' ' F15.12.4X.F18.12)7/)

1010 FOF'*T (///' Sat 2 R-patrix to transform from Perifocal '.

1 'to Geocentric Equatorial Frame.'///
2 (' ' F15.12,4X <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>